213 research outputs found

    eBEAC: electronic Bulletin board for European Avian Curators

    Get PDF
    No description supplie

    Hunting and sale of Pangolins across Sub-Saharan Africa: a preliminary analysis

    Get PDF
    Pangolins (Pholidota: Manidae) are hunted and traded for their meat and scales. We conducted preliminary analyses on the hunting and sale at markets of four species of pangolin across Sub-Saharan Africa based on data from the OFFTAKE database. Our analyses show that all four species of African pangolin are hunted and sold at markets throughout much of Sub-Saharan Africa. The proportion of pangolins as part of the total vertebrates hunted has increased significantly during the 43 years, from 1972-2014, for which we have data

    Max E. G. Bartels and the Javan lapwing Vanellus macropterus

    Get PDF
    No description supplie

    Mapping functional traits: comparing abundance and presence-absence estimates at large spatial scales

    Get PDF
    Efforts to quantify the composition of biological communities increasingly focus on functional traits. The composition of communities in terms of traits can be summarized in several ways. Ecologists are beginning to map the geographic distribution of trait-based metrics from various sources of data, but the maps have not been tested against independent data. Using data for birds of the Western Hemisphere, we test for the first time the most commonly used method for mapping community trait composition – overlaying range maps, which assumes that the local abundance of a given species is unrelated to the traits in question – and three new methods that as well as the range maps include varying degrees of information about interspecific and geographic variation in abundance. For each method, and for four traits (body mass, generation length, migratory behaviour, diet) we calculated community-weighted mean of trait values, functional richness and functional divergence. The maps based on species ranges and limited abundance data were compared with independent data on community species composition from the American Christmas Bird Count (CBC) scheme coupled with data on traits. The correspondence with observed community composition at the CBC sites was mostly positive (62/73 correlations) but varied widely depending on the metric of community composition and method used (R2: 5.6×10−7 to 0.82, with a median of 0.12). Importantly, the commonly-used range-overlap method resulted in the best fit (21/22 correlations positive; R2: 0.004 to 0.8, with a median of 0.33). Given the paucity of data on the local abundance of species, overlaying range maps appears to be the best available method for estimating patterns of community composition, but the poor fit for some metrics suggests that local abundance data are urgently needed to allow more accurate estimates of the composition of communities

    MODISTools - downloading and processing MODIS remotely sensed data in R

    Get PDF
    Remotely sensed data – available at medium to high resolution across global spatial and temporal scales – are a valuable resource for ecologists. In particular, products from NASA's MODerate-resolution Imaging Spectroradiometer (MODIS), providing twice-daily global coverage, have been widely used for ecological applications. We present MODISTools, an R package designed to improve the accessing, downloading, and processing of remotely sensed MODIS data. MODISTools automates the process of data downloading and processing from any number of locations, time periods, and MODIS products. This automation reduces the risk of human error, and the researcher effort required compared to manual per-location downloads. The package will be particularly useful for ecological studies that include multiple sites, such as meta-analyses, observation networks, and globally distributed experiments. We give examples of the simple, reproducible workflow that MODISTools provides and of the checks that are carried out in the process. The end product is in a format that is amenable to statistical modeling. We analyzed the relationship between species richness across multiple higher taxa observed at 526 sites in temperate forests and vegetation indices, measures of aboveground net primary productivity. We downloaded MODIS derived vegetation index time series for each location where the species richness had been sampled, and summarized the data into three measures: maximum time-series value, temporal mean, and temporal variability. On average, species richness covaried positively with our vegetation index measures. Different higher taxa show different positive relationships with vegetation indices. Models had high R2 values, suggesting higher taxon identity and a gradient of vegetation index together explain most of the variation in species richness in our data. MODISTools can be used on Windows, Mac, and Linux platforms, and is available from CRAN and GitHub (https://github.com/seantuck12/MODISTools)

    Crop expansion and conservation priorities in tropical countries

    Get PDF
    Expansion of cropland in tropical countries is one of the principal causes of biodiversity loss, and threatens to undermine progress towards meeting the Aichi Biodiversity Targets. To understand this threat better, we analysed data on crop distribution and expansion in 128 tropical countries, assessed changes in area of the main crops and mapped overlaps between conservation priorities and cultivation potential. Rice was the single crop grown over the largest area, especially in tropical forest biomes. Cropland in tropical countries expanded by c. 48,000 km2 per year from 1999–2008. The countries which added the greatest area of new cropland were Nigeria, Indonesia, Ethiopia, Sudan and Brazil. Soybeans and maize are the crops which expanded most in absolute area. Other crops with large increases included rice, sorghum, oil palm, beans, sugar cane, cow peas, wheat and cassava. Areas of high cultivation potential—while bearing in mind that political and socio-economic conditions can be as influential as biophysical ones—may be vulnerable to conversion in the future. These include some priority areas for biodiversity conservation in tropical countries (e.g., Frontier Forests and High Biodiversity Wilderness Areas), which have previously been identified as having ‘low vulnerability’, in particular in central Africa and northern Australia. There are also many other smaller areas which are important for biodiversity and which have high cultivation potential (e.g., in the fringes of the Amazon basin, in the Paraguayan Chaco, and in the savanna woodlands of the Sahel and East Africa). We highlight the urgent need for more effective sustainability standards and policies addressing both production and consumption of tropical commodities, including robust land-use planning in agricultural frontiers, establishment of new protected areas or REDD+ projects in places agriculture has not yet reached, and reduction or elimination of incentives for land-demanding bioenergy feedstock

    Local species assemblages are influenced more by past than current dissimilarities in photosynthetic activity

    Get PDF
    Most land on Earth has been changed by humans and past changes of land can have lasting influences on current species assemblages. Yet few globally representative studies explicitly consider such influences even though auxiliary data, such as from remote sensing, are readily available. Time series of satellite-derived data have been commonly used to quantify differences in land-surface attributes such as vegetation cover, which will among other things be influenced by anthropogenic land conversions and modifications. Here we quantify differences in current and past (up to five years before sampling) vegetation cover, and assess whether such differences differentially influence taxonomic and functional groups of species assemblages between spatial pairs of sites. Specifically, we correlated between-site dissimilarity in photosynthetic activity of vegetation (the Enhanced Vegetation Index) with the corresponding dissimilarity in local species assemblage composition from a global database using a common metric for both, the Bray-Curtis index. We found that dissimilarity in species assemblage composition was on average more influenced by dissimilarity in past than current photosynthetic activity, and that the influence of past dissimilarity increased when longer time periods were considered. Responses to past dissimilarity in photosynthetic activity also differed among taxonomic groups (plants, invertebrates, amphibians, reptiles, birds and mammals), with reptiles being among the most influenced by more dissimilar past photosynthetic activity. Furthermore, we found that assemblages dominated by smaller and more vegetation-dependent species tended to be more influenced by dissimilarity in past photosynthetic activity than prey-dependent species. Overall, our results have implications for studies that investigate species responses to current environmental changes and highlight the importance of past changes continuing to influence local species assemblage composition. We demonstrate how local species assemblages and satellite-derived data can be linked and provide suggestions for future studies on how to assess the influence of past environmental changes on biodiversity

    Non-linear changes in modelled terrestrial ecosystems subjected to perturbations

    Get PDF
    Perturbed ecosystems may undergo rapid and non-linear changes, resulting in ‘regime shifts’ to an entirely different ecological state. The need to understand the extent, nature, magnitude and reversibility of these changes is urgent given the profound effects that humans are having on the natural world. General ecosystem models, which simulate the dynamics of ecosystems based on a mechanistic representation of ecological processes, provide one novel way to project ecosystem changes across all scales and trophic levels, and to forecast impact thresholds beyond which irreversible changes may occur. We model ecosystem changes in four terrestrial biomes subjected to human removal of plant biomass, such as occurs through agricultural land-use change. We find that irreversible, non-linear responses commonly occur where removal of vegetation exceeds 80% (a level that occurs across nearly 10% of the Earth’s land surface), especially for organisms at higher trophic levels and in less productive ecosystems. Very large, irreversible changes to ecosystem structure are expected at levels of vegetation removal akin to those in the most intensively used real-world ecosystems. Our results suggest that the projected twenty-first century rapid increases in agricultural land conversion may lead to widespread trophic cascades and in some cases irreversible changes to ecosystem structure

    Impact of neutron star oscillations on the accelerating electric field in the polar cap of pulsar: or could we see oscillations of the neutron star after the glitch in pulsar?

    Full text link
    Pulsar "standard model", that considers a pulsar as a rotating magnetized conducting sphere surrounded by plasma, is generalized to the case of oscillating star. We developed an algorithm for calculation of the Goldreich-Julian charge density for this case. We consider distortion of the accelerating zone in the polar cap of pulsar by neutron star oscillations. It is shown that for oscillation modes with high harmonic numbers (l,m) changes in the Goldreich-Julian charge density caused by pulsations of neutron star could lead to significant altering of an accelerating electric field in the polar cap of pulsar. In the moderately optimistic scenario, that assumes excitation of the neutron star oscillations by glitches, it could be possible to detect altering of the pulsar radioemission due to modulation of the accelerating field.Comment: 7 pages, 8 figures. Presented at the conference "Isolated Neutron Stars: from the Interior to the Surface", London, April 24-28, 2006; to appear in Astrophysics and Space Scienc
    • …
    corecore